IMPACT OF CARDIAC RESYNCHRONIZATION THERAPY (CRT) ON THE SEVERITY OF MITRAL REGURGITATION IN DILATED CARDIOMYOPATHY PATIENTS Amr Zaki, Gehan Magdy, Mohamed Sanhory, Ramzeya Mohamed Abdelwahab Department of Cardiology, Faculty of Medicine, Alexandria University, Egypt

INTRODUCTION

Functional Mitral regurge in advanced Heart failure dilated cardiomyopathy patients is a strong predictor to mortality this arouses to study the impact of Cardiac resynchronization therapy on functional MR in DCM.

AIM OF THE WORK

The aim of our study was to assess the effect of cardiac resynchronization therapy on the severity of mitral valve regurgitation among patients with DCM.

PATIENTS AND METHODS

This is a prospective observational study of Twenty-five patients with advanced heart failure DCM with sinus rhythm LBBB wide QRS \geq 130 ms with at least moderate MR, subjected to CRT implantation at Alexandria main university Hospital and followed up by Echocardiography after CRT by 1 week and 10 weeks and comparing between improved MR (Group I) and stable MR group patients (Group II).

RESULTS

Evidence of early response to CRT was observered in 9 patients (36%), MR improvement among responders to CRT was observed in 7 patients (77.8%) and was higher among early echocardiographic responders (48%) than among early clinical responders (40%), and is significantly association with percent of reduction in QRS width in surface ECG. (*P* value: 0.026). FMR improvement observed in 15 patients (60%) 'Group I' (p value <0.001) vs 10 patients (40%) show stable MR 'Group II'.

	Pre	1 week	10 weeks	Test of si	
QRSduration (m sec)	160 (140 – 160)	120 (80 - 120)	120 (80 - 120)	Fr=49.36 <0.001	
NYHA					
Class II	0 (0%)	11 (44%)	14 (56%)		
Class II-III	0 (0%)	3 (12%)	2 (8%)	Er_21.95	
Class III	21 (84%)	9 (36%)	8 (32%)	$\Gamma_{1}=31.63$	
Class III-IV	3 (12%)	2 (8%)	1 (4%)	(<0.001	
Class IV	1 (4%)	0 (0%)	0 (0%)		
EDD (mm)	78.55 ± 9.07	76.20 ± 9.61	72.85 ± 12.15	F=7.482 (0.004*	
ESD (mm)	67.57 ± 9.52	64.28 ± 11.29	59.91 ± 12.04	F=25.29 (<0.001	
EDV (ml)	284(194 - 594)	267(113-483)	275(113-487)	Fr=14.63 (0.001*	
ESV (ml)	203.5(128-459)	189(68.4 - 394)	151(68.4-450)	Fr=25.44 (<0.001	
LAD (mm)	51.94 ± 4.26	47.68 ± 4.39	45.91 ± 6.64	F=26.69 (<0.001	
LAVI (ml/m ²)	42.3(30.7 - 77.1)	34 (22.7 – 89.1)	29.3(24.8 - 101.2)	Fr=18.08 (<0.001	
EF %	29.11 ± 6.61	34.86 ± 8.35	37.48 ± 4.31	F=38.39 (<0.001	
E wave (cm/s)	96 (40 - 150)	50.8 (38.4 - 90.3)	64(26.7 – 179)	Fr=14.33 (0.001*	
A (cm/s)	64.7(27.6-124)	96.43(29.8 - 124)	74.5(43 - 131)	Fr=6.24 (0.044*	
E/A	1.76(0.46-3.33)	0.66(0.35-3.03)	1.43(0.35 - 2.29)	Fr=12.42 (0.002*	
Mean E` (cm/s)	7.30 (4.25 – 14.0)	5.20 (3.43 - 12.0)	8.93(3.80-12.15)	Fr=3.23 (0.198)	
E/E`	12.07(6.66–26.82)	9.03(5.33–26.36)	7.39(5.33–21.41)	Fr=4.14 (0.126)	
MR					
Mild	0 (0%)	10 (40%)	10 (40%)	Er-30.0	
Moderate	13 (52%)	8 (32%)	8 (32%)	$\Gamma_1 = 30.0$	
Severe	12 (48%)	7(28%)	7 (28%)	(<0.001	

 Qualitative data were described using number and percent, normally quantitative data was expressed in mean ± SD and abnormally distributed data

 was expressed in median (Min. - Max.)

 (adjusted Bonferroni)

 F: F test (ANOVA) with repeated measures, Sig. bet. Periods was done using Post Hoc Test

 F: Friedman test, Sig. bet. Periods was done using Post Hoc Test (Dunn's)

 $p_1 = 0.001^*$

 $p_2=0.001^*, p_3=1.000$

p: p value for comparing between the studied periods $-p_1$: p value for comparing between Pre and 1 week p_2 : p value for comparing between Pre and 10 week $-p_3$: p value for comparing between 1 week and 10 week *: Statistically significant at p ≤ 0.05

ers (n = 25)		Table 2: Comp	arison between	the two studied group	os according to diffe	rent paramet	ers
				Group I (n = 15)	Group II (n = 10)	Test of Sig.	р
Pairwise			Pre	160(140 - 160)	150(140 - 160)	U=47.50	0.129
:0.001*,		QRS duration	1 week	120(80 - 120)	120(120-120)	U=70.0	0.807
$0.001^*, p_3=0.888$		(m sec)	10 weeks	120(80 - 120)	120(120 - 120)	U=65.0	0.605
	2		% of reduction	25(20-46.67)	19.65(14.29-25)	U=35.0*	0.026*
0.001*,			Pre	75.71 ± 7.92	82.81 ± 9.39	t=2.039	0.053
0.001*, p ₃ =0.480			1 week	72.98 ± 9.04	81.03 ± 8.70	t=2.213*	0.037*
0.427,		EDD (mm)	10 weeks	68.33 ± 9.21	79.64 ± 13.29	t=2.343*	0.034*
$0.011^*, p_3=0.009^*$	2		% of reduction	3.70(-5.69 - 25.32)	1.89(-5.87 - 23.17)	U=53.0	0.238
0.021^* ,			Pre	64.23 ± 7.64	72.58 ± 10.22	t=2.339	0.028*
$0.001, p_3 < 0.001$ $0.021^*,$			1 week	60.27 ± 10.53	70.30 ± 10.03	t=2.376*	0.026*
$0.024^*, p_3=0.157$	2	ESD (mm)	10 weeks	55.17 ± 9.67	67.01 ± 12.15	t=2.707*	0.013*
0.001, 0.001*.p ₂ =0.157			% of reduction	11.75(0.24 - 29.39)	4.68(0.24-25.27)	U=45.0	0.103
0.001*,			Pre	203.5 (128 - 220)	268.3 (149 - 459)	U= 50.50	0.177
$0.001^*, p_3=0.132$			1 week	136 (68.4 - 210)	249 (120 - 394)	U= 33.0*	0.019*
$0.001^{*}, p_{3}=0.888$		ESV (ml)	10 weeks	131 (68.4 – 210)	249 (109 - 450)	U= 34.0*	0.023*
0.001*,			% of reduction	31.88 (-3.28 - 46.56)	4.58 (-3.28 - 26.85)	U= 36.0*	0.031*
0.001 [*] ,p ₃ =0.888 0.001 [*]		Early Clinical Response					
0.024*,p ₃ =0.157			Responder	10 (66.7%)	7 (70.0%)	$\chi^2 =$	^{FE} p=
0.238,			Not responder	5 (33.3%)	3 (30.0%)	0.031	1.000
$0.238, p_3=0.018^*$		Early Echocardiographic response		X	2 (201070)		
0.061 , $p_3=0.105$		jgrupino	Responder	12 (80.0%)	4 (40.0%)	γ ² =	^{FE} p=
0.05,			Not responder	3 (20.0%)	6 (60.0%)	~ 4.167	р 0.087
$0.05, p_3 > 0.05$		Responder (both clinical	and Echo) $(n=0)$	7 (77.8%)	2 (22 2%)		0.007
0.05, p ₂ >0.05		responder (both eniliear	ing Ecno, (n=))	. (2 (22.270)		

CONCLUSION

CRT improves degree of functional MR among DCM patients and improvement in degree of MR is significantly associated with baseline QRS and percent of reduction in QRS width.

MEDICINE

2022©Alexandria Faculty of Medicine CC-BY-NC