THE USE OF NEW LUNG ULTRASOUND SCORE AS A PREDICTOR OF WEANING OUTCOME IN MECHANICALLY VENTILATED PATIENTS

Tayseer Mohamed Zaytoun, Atef Abdelaziz Mahrous, Sherif Abd Elfatah Shehata, Islam Salah Salah Khattab Department of Critical Care Medicine, Faculty of Medicine, Alexandria University

INTRODUCTION

Mechanical ventilation (MV) is the most common therapeutic modality used for critically ill patients. MV is a critical intervention to sustain life in acute or emergent settings. This procedure involves applying positive pressure breaths and relies on the airway system's compliance and resistance.

To maximize the benefits of the ventilator and minimize the risk of complications in critically ill patients, it is important to avoid both premature extubation and unnecessary prolongation of MV.

Using ultrasound can help to predict the weaning and extubation outcome as it is easy to use, non invasive, available and repeatable at the bedside

Diaphragm ultrasound is used to assess and measure diaphragm excursion and diaphragm thickening fraction

Lung ultrasound is used to measure modified lung ultrasound score (0-24) it is better than classical LUS score (0-36) as it is easier and decreases the movement of critically ill patients at beds.

AIM OF THE WORK

The aim of our work was to evaluate and assess the value of lung and diaphragm ultrasound to predict weaning and extubation outcome, using diaphragm thickening fraction (DTF), diaphragm excursion (DE), modified lung ultrasound score (mLUS score) and rapid shallow breathing index (RSBI).

PATIENTS AND METHODS

This study included 65 mechanically ventilated patients admitted to Critical Care Medicine Department in the Alexandria Main University Hospital from January 2024 to November 2024. Excluded patients were children, pregnant females, Tracheostomized patients, who diagnosed with neuromuscular diseases and who presented by chest trauma.

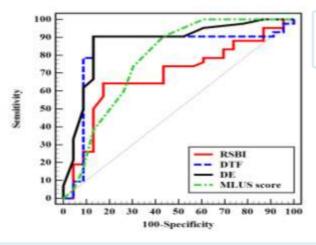
Age, sex, APACHE II score, ICU stay and MV days of each patients were recorded

RSBI was calculated from respiratory rate (RR) divided by tidal volume (TV) in litres. **DE**, by using curved probe in the right anterior subcostal area, was measured as the distance between the diaphragm movement at end of inspiration & at end of expiration. **DTF**, by using linear probe over the zone of apposition, was measured as (diaphragm thickening difference) / (diaphragm thickening at end expiration) × 100%.

mLUS score, by using curved probe to examine both lungs, was ranged (0-24) Each lung was separated into 4 regions (upper anterior, lower anterior, lateral, posterobasal) and each region received score (0-3) according to pulmonary ventilation.

RESULTS

Table 1: Predict performance for different parameters to predict Success (n=42) from Failure (n=23)


	AUC	p	95% C.I	Cut off	Sensitivity	Specificity	PPV	NPV
RSBI	0.685	0.014*	0.550 - 0.821	≤105	64.29	56.52	73.0	46.4
DTF	0.829	< 0.001*	0.703 - 0.955	>39.4	88.10	86.96	92.5	80.0
DE	0.871	< 0.001*	0.772 - 0.971	>1.1#	90.48	86.96	92.7	83.3
MLUS score	0.774	< 0.001*	0.641 - 0.907	≤8	73.81	69.57	81.6	59.3

AUC: Area Under a Curve NPV: Negative predictive value

p value: Probability value PPV: Positive predictive value CI: Confidence Intervals

*: Statistically significant at $p \le 0.05$

#Cut off had been choose according to Youden index

Figure1: ROC curve for different parameters to predict Success (n = 42) from Failure Extubation (n = 23)

Table 2: Correlation between MV Days and ICU Stay with different parameters in Total group (n = 65)

		MV Days	ICU Stay
RSBI	r	0.342*	0.315*
KSDI	p	0.005^{*}	0.010^{*}
DTF	r	-0.564*	-0.612*
DIF	p	< 0.001*	< 0.001*
DE	r	-0.630*	-0.598*
DE	p	< 0.001*	< 0.001*
MLUS score	r	0.679*	0.690*
WILUS SCORE	p	< 0.001*	< 0.001*

r: Pearson coefficient

Table 3: Relation among Mortality with different parameters in Total group (n=65)

	Mor	U		
	Died (n = 10)	Survive $(n = 55)$	U	р
RSBI				
Min – Max.	68.50 - 121.00	61.20 – 117.7		
Mean \pm SD.	102.64 ± 17.93 86.39 ± 17.74		147.50*	0.020^{*}
Median (IQR)	106.7 (95.77 – 115.3)	77.10 (72.60 – 103.2)		
DTF				
Min – Max.	16.10 - 41.80	19.70 - 60.80		0.026*
Mean \pm SD.	35.04 ± 10.04	42.72 ± 10.71	154.0*	
Median (IQR)	34.20 (27.50 – 44.70)	45.10 (32.85 – 50.95)		
DE				
Min – Max.	0.50 - 1.60	0.70 - 2.30		0.024*
Mean \pm SD.	0.98 ± 0.45	1.33 ± 0.40	151.0*	
Median (IQR)	0.75(0.70-1.30)	1.40(1.05-1.65)		
MLUS score				
Min – Max.	7.00 - 16.00	4.00 - 15.00		0.014*
Mean \pm SD.	9.90 ± 2.51	7.67 ± 2.19	141.50*	
Median (IQR)	9.5 (7.00 – 13.00)	7.00 (6.00–9.00)		

SD: Standard deviation

p: p value for Relation among

*: Statistically significant at $p \le 0.05$

U: Mann Whitney test
Mortality with different parameters

CONCLUSION

Diaphragm US is better than lung US and RSBI to predict successful weaning from MV. DE sensitivity and specificity were higher than DTF, and both of them had sensitivity and specificity higher than mLUS score and RSBI.

RSBI had the least sensitivity & specificity to predict the weaning success.

There was positive correlation between mLUS and RSBI with MV days, ICU stay and 28 days mortality. Conversely, DE & DTF were negatively correlated with MV days, ICU stay and 28 days mortality.

2025 ©Alexandria Faculty of Medicine CC-BY-NC

^{*:} Statistically significant at $p \le 0.05$